Stress reduction through cortical bone thickening improves bone mechanical behavior in adult female Beclin-1<SUP>+/-</SUP> mice
作者全名:"Yang, Jiaojiao; Pei, Qilin; Wu, Xingfan; Dai, Xin; Li, Xi; Pan, Jun; Wang, Bin"
作者地址:"[Yang, Jiaojiao; Pan, Jun] Chongqing Univ, Coll Bioengn, Key Lab Biorheol Sci & Technol, Minist Educ, Chongqing, Peoples R China; [Yang, Jiaojiao; Pei, Qilin; Wu, Xingfan; Dai, Xin; Li, Xi; Wang, Bin] Chongqing Med Univ, Inst Life Sci, Coll Basic Med, Chongqing, Peoples R China; [Pei, Qilin] Fourth Mil Med Univ, Dept Biomed Engn, Xian, Peoples R China"
通信作者:"Pan, J (通讯作者),Chongqing Univ, Coll Bioengn, Key Lab Biorheol Sci & Technol, Minist Educ, Chongqing, Peoples R China.; Wang, B (通讯作者),Chongqing Med Univ, Inst Life Sci, Coll Basic Med, Chongqing, Peoples R China."
来源:FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY
ESI学科分类:Multidisciplinary
WOS号:WOS:001198946800001
JCR分区:Q1
影响因子:4.3
年份:2024
卷号:12
期号:
开始页:
结束页:
文献类型:Article
关键词:Beclin-1; bone strength; mechanical property; finite element model; cortical bone; adult female; stress; safety factor
摘要:"Fragility fractures, which are more prevalent in women, may be significantly influenced by autophagy due to altered bone turnover. As an essential mediator of autophagy, Beclin-1 modulates bone homeostasis by regulating osteoclast and chondrocyte differentiation, however, the alteration in the local bone mechanical environment in female Beclin-1(+/-) mice remains unclear. In this study, our aim is to investigate the biomechanical behavior of femurs from seven-month-old female wild-type (WT) and Beclin-1(+/-) mice under peak physiological load, using finite element analysis on micro-CT images. Micro-CT imaging analyses revealed femoral cortical thickening in Beclin-1(+/-) female mice compared to WT. Three-point bending test demonstrated a 63.94% increase in whole-bone strength and a 61.18% increase in stiffness for female Beclin-1(+/-) murine femurs, indicating improved biomechanical integrity. After conducting finite element analysis, Beclin-1(+/-) mice exhibited a 26.99% reduction in von Mises stress and a 31.62% reduction in maximum principal strain in the femoral midshaft, as well as a 36.64% decrease of von Mises stress in the distal femurs, compared to WT mice. Subsequently, the strength-safety factor was determined using an empirical formula, revealing that Beclin-1(+/-) mice exhibited significantly higher minimum safety factors in both the midshaft and distal regions compared to WT mice. In summary, considering the increased response of bone adaptation to mechanical loading in female Beclin-1(+/-) mice, our findings indicate that increasing cortical bone thickness significantly improves bone biomechanical behavior by effectively reducing stress and strain within the femoral shaft."
基金机构:"Natural Science Foundation of Chongqing, China [CSTB2022NSCQ-MSX0110]; Program for Youth Innovation in Future Medicine, Chongqing Medical University [W0046]"
基金资助正文:"The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research was funded by the Natural Science Foundation of Chongqing, China (CSTB2022NSCQ-MSX0110), and the Program for Youth Innovation in Future Medicine, Chongqing Medical University (W0046)."