关键词:
压力性损伤
人工智能
深度学习
YOLO
目标检测
神经网络模型
App
摘要:
背景随着人口老龄化,压力性损伤(PI)的发病率逐渐增加,这不仅严重影响了患者的生存质量,还增加了医保支出。然而,PI的早期发现和准确分期极大地依赖于专业培训。目的构建并测试一个用于PI自动检测和分期的人工智能模型,以提高PI诊断的实时性、准确性和客观性。方法选取常熟市第一人民医院压疮电子化管理系统中2021年1月—2024年2月的693张PI图像,将图像随机划分为训练集(551张)和测试集(142张),并按照2019年美国压疮咨询委员会(NPUAP)制订的PI预防和治疗指南分为6期,包括:Ⅰ期154张、Ⅱ期188张、Ⅲ期160张、Ⅳ期82张、深部组织损伤期57张、不可分期52张。利用基于5种不同版本的YOLOv8[nano(n)、small(s)、medium(m)、large(l)和extra large(x)]神经网络和迁移学习,建立针对PI的深度学习目标检测模型。模型评价指标包括精确度、准确率、灵敏度、特异度及检测速度等。最后,通过Ultralytics Hub平台将模型部署到手机应用程序(App)中,实现AI模型在临床工作中的应用。结果在对包含142张PI图像的测试集进行评估时,YOLOv8l版本在确保高精确度(0.827)的同时,也展现了较快的推理速度(68.49帧/s),与其他YOLO版本相比,在精确度与速度之间取得了最佳的平衡。具体而言,其在所有类别上的整体准确率为93.18%,灵敏度为76.52%,特异度为96.29%,假阳性率为3.72%。在6个PI分期中,模型预测Ⅰ期的准确率最高,达到95.97%;预测Ⅱ期、Ⅲ期、Ⅳ期、深部组织损伤期、不可分期分别取得了91.28%、91.28%、91.95%、95.30%和93.29%的准确率。就处理速度而言,YOLOv8l处理142张图像的总耗时为2.07 s,平均每秒可处理68.49张PI图像。结论基于YOLOv8l网络的AI模型能够快速、准确地对PI进行检测和分期。将该模型部署到手机App中,能够在临床实践中便携使用,具有很大的临床应用潜力。