Diagnosis of thyroid disease using deep convolutional neural network models applied to thyroid scintigraphy images: a multicenter study
作者全名:"Zhao, Huayi; Zheng, Chenxi; Zhang, Huihui; Rao, Maohua; Li, Yixuan; Fang, Danzhou; Huang, Jiahui; Zhang, Wenqian; Yuan, Gengbiao"
作者地址:"[Zhao, Huayi; Zheng, Chenxi; Zhang, Huihui; Rao, Maohua; Li, Yixuan; Fang, Danzhou; Huang, Jiahui; Zhang, Wenqian; Yuan, Gengbiao] Chongqing Med Univ, Dept Nucl Med, Affiliated Hosp 2, Chongqing, Peoples R China"
通信作者:"Zhang, WQ; Yuan, GB (通讯作者),Chongqing Med Univ, Dept Nucl Med, Affiliated Hosp 2, Chongqing, Peoples R China."
来源:FRONTIERS IN ENDOCRINOLOGY
ESI学科分类:CLINICAL MEDICINE
WOS号:WOS:001054224100001
JCR分区:Q2
影响因子:5.2
年份:2023
卷号:14
期号:
开始页:
结束页:
文献类型:Article
关键词:deep convolutional neural network; thyroid scintigraphy; artificial intelligence; thyroid disease; nuclear medicine physicians
摘要:"Objectives: The aim of this study was to improve the diagnostic performance of nuclear medicine physicians using a deep convolutional neural network (DCNN) model and validate the results with two multicenter datasets for thyroid disease by analyzing clinical single-photon emission computed tomography (SPECT) image data.Methods: In this multicenter retrospective study, 3194 SPECT thyroid images were collected for model training (n=2067), internal validation (n=514) and external validation (n=613). First, four pretrained DCNN models (AlexNet, ShuffleNetV2, MobileNetV3 and ResNet-34) for were tested multiple medical image classification of thyroid disease types (i.e., Graves' disease, subacute thyroiditis, thyroid tumor and normal thyroid). The best performing model was then subjected to fivefold cross-validation to further assess its performance, and the diagnostic performance of this model was compared with that of junior and senior nuclear medicine physicians. Finally, class-specific attentional regions were visualized with attention heatmaps using gradient-weighted class activation mapping.Results: Each of the four pretrained neural networks attained an overall accuracy of more than 0.85 for the classification of SPECT thyroid images. The improved ResNet-34 model performed best, with an accuracy of 0.944. For the internal validation set, the ResNet-34 model showed higher accuracy (p < 0.001) when compared to that of the senior nuclear medicine physician, with an improvement of nearly 10%. Our model achieved an overall accuracy of 0.931 for the external dataset, a significantly higher accuracy than that of the senior physician (0.931 vs. 0.868, p < 0.001).Conclusion: The DCNN-based model performed well in terms of diagnosing thyroid scintillation images. The DCNN model showed higher sensitivity and greater specificity in identifying Graves' disease, subacute thyroiditis, and thyroid tumors compared to those of nuclear medicine physicians, illustrating the feasibility of deep learning models to improve the diagnostic efficiency for assisting clinicians."
基金机构:"Program for Youth Innovation in Future Medicine, Chongqing Medical University (grant no. W0155).; Program for Youth Innovation in Future Medicine, Chongqing Medical University; [W0155]"
基金资助正文:"Program for Youth Innovation in Future Medicine, Chongqing Medical University (grant no. W0155)."