The dysfunctionality of hippocampal synapses may be directly related to PM-induced impairments in spatial learning and memory in juvenile rats

作者全名:"Gui, Jianxiong; Liu, Jie; Han, Ziyao; Yang, Xiaoyue; Ding, Ran; Yang, Jiaxin; Luo, Hanyu; Huang, Dishu; Chen, Hengsheng; Cheng, Li; Jiang, Li"

作者地址:"[Gui, Jianxiong; Liu, Jie; Han, Ziyao; Yang, Xiaoyue; Ding, Ran; Yang, Jiaxin; Luo, Hanyu; Huang, Dishu; Chen, Hengsheng; Cheng, Li; Jiang, Li] Chongqing Med Univ, Natl Clin Res Ctr Child Hlth & Disorders, Key Lab Child Dev & Disorders, Chongqing Key Lab Pediat,Dept Neurol,Childrens Hos, Chongqing 400014, Peoples R China; [Jiang, Li] Chongqing Med Univ, Childrens Hosp, Dept Neurol, 136 Zhongshan Er Rd, Chongqing 400014, Peoples R China"

通信作者:"Jiang, L (通讯作者),Chongqing Med Univ, Childrens Hosp, Dept Neurol, 136 Zhongshan Er Rd, Chongqing 400014, Peoples R China."

来源:ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY

ESI学科分类:ENVIRONMENT/ECOLOGY

WOS号:WOS:000950822500001

JCR分区:Q1

影响因子:6.8

年份:2023

卷号:254

期号: 

开始页: 

结束页: 

文献类型:Article

关键词:Particulate matter (PM); Spatial learning and memory; Synaptic plasticity; RNA sequencing (RNAseq)

摘要:"Epidemiological studies have demonstrated that exposure to air particulate matter (PM) increases the incidence of cardiovascular and respiratory diseases and exerts a significant neurotoxic effect on the nervous system, especially on the immature nervous system. Here, we selected PND28 rats to simulate the immature nervous system of young children and used neurobehavioral methods to examine how exposure to PM affected spatial learning and memory, as well as electrophysiology, molecular biology, and bioinformatics to study the morphology of hippocampus and the function of hippocampal synapses. We discovered that spatial learning and memory were impaired in rats exposed to PM. The morphology and structure of the hippocampus were altered in the PM group. In addition, after exposure to PM, the relative expression of synaptophysin (SYP) and postsynaptic density 95 (PSD95) proteins decreased dramatically in rats. Furthermore, PM exposure impaired long-term potentiation (LTP) in the hippocampal Schaffer-CA1 pathway. Interestingly, RNA sequencing and bioinformat-ics analysis revealed that the differentially expressed genes (DEGs) were rich in terms associated with synaptic function. Five hub genes (Agt, Camk2a, Grin2a, Snca, and Syngap1) that may play a significant role in the dys-functionality of hippocampal synapses were identified.Our findings implied that exposure to PM impaired spatial learning and memory via exerting impacts on the dysfunctionality of hippocampal synapses in juvenile rats and that Agt, Camk2a, Grin2a, Snca, and Syngap1 may drive PM-caused synaptic dysfunction."

基金机构:"Talent Program of Chongq- ing, China [cstc2021ycjh-bgzxm0187]"

基金资助正文:"This work was jointly supported by the Talent Program of Chongq- ing, China (cstc2021ycjh-bgzxm0187) ."