An Oxygen Supply Strategy for Sonodynamic Therapy in Tuberculous Granuloma Lesions Using a Catalase-Loaded Nanoplatform

作者全名:"Hu, Can; Qiu, Yan; Guo, Jiajun; Cao, Yuchao; Li, Dairong; Du, Yonghong"

作者地址:"[Hu, Can; Qiu, Yan; Guo, Jiajun; Cao, Yuchao; Du, Yonghong] Chongqing Med Univ, Coll Biomed Engn, State Key Lab Ultrasound Med & Engn, Chongqing 400016, Peoples R China; [Hu, Can; Qiu, Yan; Guo, Jiajun; Cao, Yuchao; Du, Yonghong] Chongqing Med Univ, Chongqing Key Lab Biomed Engn, Chongqing 400016, Peoples R China; [Li, Dairong] Chongqing Med Univ, Affiliated Hosp 1, Dept Resp & Crit Care Med, Chongqing 400016, Peoples R China; [Li, Dairong] Chongqing Med Univ, Affiliated Hosp 1, Dept Resp & Crit Care Med, 1 Youyi Rd, Chongqing 400016, Peoples R China; [Du, Yonghong] Chongqing Med Univ, Coll Biomed Engn, State Key Lab Ultrasound Med & Engn, 1 Yixueyuan Rd, Chongqing 400016, Peoples R China"

通信作者:"Li, DR (通讯作者),Chongqing Med Univ, Affiliated Hosp 1, Dept Resp & Crit Care Med, 1 Youyi Rd, Chongqing 400016, Peoples R China.; Du, YH (通讯作者),Chongqing Med Univ, Coll Biomed Engn, State Key Lab Ultrasound Med & Engn, 1 Yixueyuan Rd, Chongqing 400016, Peoples R China."

来源:INTERNATIONAL JOURNAL OF NANOMEDICINE

ESI学科分类:PHARMACOLOGY & TOXICOLOGY

WOS号:WOS:001094865700001

JCR分区:Q1

影响因子:8

年份:2023

卷号:18

期号: 

开始页:6257

结束页:6274

文献类型:Article

关键词:tuberculosis granulomatous; hypoxia; catalase; sonodynamic therapy; Bacille Calmette-Guerin

摘要:"Purpose: Tuberculosis (TB) is a chronic disease caused by Mycobacterium tuberculosis (MTB) that remains a major global health challenge. One of the main obstacles to effective treatment is the heterogeneous microenvironment of TB granulomas. This study aimed to investigate the potential of a hypoxic remission-based strategy to enhance the outcome of tuberculosis treatment when implemented in combination with ultrasound. Methods: A PLGA nanoparticle (LEV@CAT-NPs) loaded with levofloxacin (LEV) and catalase (CAT) was fabricated by a double emulsification method, and its physical characteristics, oxygen production capacity, drug release capacity, and biosafety were thoroughly investigated. The synergistic therapeutic effects of ultrasound (US)-mediated LEV@CAT-NPs were evaluated using an experimental mouse model of subcutaneous tuberculosis granuloma induced by Bacille Calmette-Guerin (BCG) as a substitute for MTB. Results: LEV@CAT-NPs exhibited excellent oxygen production capacity, biosafety, and biocompatibility. Histological analysis revealed that ultrasound-mediated LEV@CAT-NPs could effectively remove bacteria from tuberculous granulomas, significantly alleviate the hypoxia state, reduce the necrotic area and inflammatory cells within the granuloma, and increase the penetration of dyes in granuloma tissues. The combined treatment also reduced the serum levels of inflammatory cytokines (eg, TNF-alpha, IL-6, and IL-8), and significantly downregulated the expression of hypoxia-inducible factor 1 alpha (HIF-1 alpha) and vascular endothelial growth factor (VEGF). These results suggested that the synergistic treatment of ultrasound-mediated LEV@CAT-NPs effectively eradicated the bacterial infection and reversed the hypoxic microenvironment of tuberculous granulomas, further promoting tissue repair. Conclusion: This study provides a non-invasive and new avenue for treating refractory tuberculosis infections. The potential role of regulating hypoxia within infected lesions as a therapeutic target for infection deserves further exploration in future studies."

基金机构:National Natural Science Foundation of China [82270115]; Chongqing Graduate Research Innovation Project Fund [CYS22374]

基金资助正文:<B>Funding</B> This work was supported by the National Natural Science Foundation of China (No. 82270115) and the Chongqing Graduate Research Innovation Project Fund (No. CYS22374) .