Impacts of carbamate pesticides on olfactory neurophysiology and cholinesterase activity in coho salmon (Oncorhynchus kisutch)
在 coho 大马哈鱼(Oncorhynchus kisutch ) 的嗅觉的神经生理学和胆碱酯酶活动上的氨基甲酸酯杀虫剂的影响作者机构:Simon Fraser Univ Dept Biol Sci Burnaby BC V5A 1S6 Canada
出 版 物:《AQUATIC TOXICOLOGY》 (水生毒物学)
年 卷 期:2004年第69卷第2期
页 面:133-148
核心收录:
中图分类:Q17[生物科学-普通生物学]
学科分类:0710[理学-生物学] 07[理学] 071004[理学-水生生物学]
基 金:NINDS NIH HHS [F32 NS10973] Funding Source: Medline
主 题:carbofuran IPBC mancozeb electro-olfactogram AChE
摘 要:Many freshwater aquatic environments in the Pacific Northwest of North America contain neurotoxic pesticides, an issue of concern given the use of many of these habitats by Pacific salmon (Oncorhynchus sp.). Pesticides such as carbamates are known to affect fundamental physiological systems (such as the enzyme acetylcholinesterase (AChE)), and have been shown to affect salmonid olfactory-mediated behaviors. A neurophysiological measure of olfactory function, the electro-olfactogram (EOG), was used in this study to examine the impacts of acute localized exposure to three carbamates (the insecticide carbofuran, the antisapstain IPBC, and the fungicide mancozeb) on olfactory function in the coho salmon (Oncorhynchus kisutch). We also examine the potential for these pesticides to alter AChE levels in the,primary olfactory system and brain with brief exposures (30 min to only the olfactory rosette (OR)). In results, we find that the EOG in coho salmon is highly sensitive to brief localized exposures of two of these three carbamate pesticides. The effective nominal concentration required to cause a 50% reduction in EOG amplitude (EC50) for carbofuran was 10.4 mug/l and for IPBC was 1.28 mug/l. For mancozeb, the EC50 was higher at 2.05 mg/l. All three carbamates also affected AChE activity levels in the OR and brain (BR): carbofuran exposure at 200 mug/l significantly inhibited AChE activity in the OR, and both IPBC and mancozeb significantly increased AChE activity in BR at multiple concentrations with acute localized exposure. These carbamate effects highlight the sensitivity of salmon olfactory neurophysiology to pesticides acting not only potentially via AChE-inhibition, but also by other currently unknown modes of action. (C) 2004 Elsevier B.V. All rights reserved.